

UV2600 UV-VIS Spectrophotometer

Reliable High Performance Wide Range of Application

UV2600 is a PC controlled high performance PMT based UV-VIS spectrophotometer with optional Integration Sphere accessory. It has very high sensitivity and low stray light which allow the detection of trace volume of sample as low as 50µL. It comes with power control software. It is the best choice for academic and research in universities, QA/QC and environmental monitoring.

Double Beam Optics with 6 Slit Width selectable

• Enhance the measurement accuracy for different resolution requirements.

Real-Time Correction of Dark Current

• Ensure that reliable data to be acquired, especially for micro volume analysis as 50µL sample.

Built-in Self Diagonistic and GLP/GMP Wizard Functions

• User can periodically check the performance of the instrument to ensure it performs sample measurement under the optimal performance.

 Ampoint

 Named No.
 Challett

 Named No.
 Challett

 Marcel No.
 Challett

 School 20 - Similar
 Challett

 K. Answare (K. Marcel No. Real-Named No.
 No.

 K. Answare (K. Marcel No. Real-Named No.
 No.

 K. Answare (K. Marcel No.
 No.

 0.010 -0.01280 -0.01280 5.000 B

GLP/GMP Wizard Function

Cicse

Wide Linear Range and High Precision

Ultra-low stray light

· Apart from traditional technique, it is using a smart approach for multiple diffraction and aberration elimination to reduce the stray light. Built with high quality optical components while employing strict quality control procedure to break through the limitation stray light of traditional monochromator that can achieve. Down to 0.010%T stray light can be achieved and thus the wider range of concentration and dynamica range is made possibly.

Complete Protein/Nucleic Acid Analysis Function

• The dsDNA , ssDNA , RNA , Oligo nucleic acid samples can be detected easily. Direct ultraviolet method (230 nm, 280 nm, 260 nm, 320 nm) and Bradford, BCA, Lowry and other dyeing methods can be used to measure different protein samples.

Fine Wavelength Driving Steps with High Voltage Synchronous

• Fastest 2,000 nm/min wavelength scan speed, 3,000nm/min slew speed. Highest 0.1nm wavelength scan resolution and repeatability can be achieved thanks to finest wavelength setting range 0.01nm.

General Instrument Nuc	General Instrument Nucleic Acid Sample(5)	Heat Sneeth
Measurement ssDNA Concentration Constant 30	Instrument Parameters E(S)→E(R) □ Inte.S Data Mode ABS · Silt I mm mm France Control	N.Son 270.00
Conc. Unit ug/mL Upper Limit 0	PMT Auto PMT Value P	Piconetty 140-
Lower Limit 10000	Lamp Change 340 • nm Response Fast • ABS 4 •	Vesserovert 1.30-
	Baseline User 1 Non-ABS 2	Protes 8.15 .10 Nata C 8.00
		ä 1.00-

Standard Curve of the Potassium Permanganate Solutions

(2)

UV Analyst Software

UV Analyst is a Windows® based software with multiple windows interface for multi-tasking. User will find it intuitive, easy to use with powerful functions.

Measurement Modes

• Wavelength scan, time scan, photometry, quantitative, nucleic acid, protein, hexavalent chromium and etc.

Data Processing

• Peak and valley detection, derivatives, spectra arithmetic, peak area and average calculation, data export (Excel®), kinetics.

Report

• Font settings, parameters settings, spectra printing (overlaid), data grouping and printing, sample name input and remark and etc.

Software Operation based on the Analysis Flow

Start: Method settings

Measurement Data Processing / Print Report

Time Scan

The time scan function can be used to perform the kinetics analysis, which can be used to calculate the activity value.

Nucleic Acid and Protein Measurement

The nucleic acid and protein measurement is a standard function and is suitable for measuring biological samples.

Custom Report

The analysis report are automatically generated and can be edited as needed.

Spectra Arithmetic

Spectra and values can be added, subtracted, multiplied, divided.

Quantitative Measurement

	1949 394 Das						Prody	
×.	310.00m 0.3227m 2.0m	Over State	Desire 11	el Dela Erac				
	Lotters	非当美国の	Re .	This Raw	woprasj	48	[amjeg4]	
10	25 AS		11		8,2808	1.2005		10.0000
	-		2 2		2.005	£446	3	33.0000
	20-	/	3.3		8.5671	£.9671		82,5000
	-		44		1.8827	1.882		AN. 1000
	15		5					
			6					
	10		2					
•								
	a							
	1							
	00 Meteoretereteretereteretere	The local design of the lo	-11					
			80	Sanpie Hano	WU (P 1.0)	Als	Condrapt	
	Tal. Cali Pasaratas		11		8.3288	6.3388	27.8	100
*a.	<u>5</u>	85.9552	2					
		6 9991	3					
	82	6.5991	4					
1			5					
19 I	Care & AUXARD-AR		8					
	Contract and the		2					
**								

The standard curve and sample information of the quantitative measurement are displayed in the same screen.

Export to Excel

It is easy to export spectra or report files to Excel.

-(4)

Variety of accessories suitable for different applications

Micro cell holder

Use the micro cell holder to

reliably test micro volume samples

of 50 µL, 25 µL, and 5 µL, especially

for precious or trace amount of

samples such as nuclear

acid/protein.

Technical Specifications

Sample amount	50、	25、	5(µL)	Holder	0022754
Applicable wavelength range	220	~ 85	0(nm)	Noise	0.004Abs

Micro cell and holder are ordered separately.

Autosipper

The built-in pump-type autosipper is designed to analyze a large number of samples without manual washing and changing of the cell. It is programmable, with or without optional electronic temperature control.

Flow cell volume	70 µL	Noise	0.004Abs
Wavelength range	220 ~ 850(nm)	Order no. (with temp	0022755 o control)
Temperature range	20~40(°C)	Order no. (without ter	0022760 np control

Temperature range is only applicable to with temperature control model.

Auto 6-Cell Changer

The auto 6-cell changer is designed to automatically analyze multiple samples. It can perform interleaved time scanning between multiple samples.

There are two models, with or without electronic temperature control. Optional magnetic stirrer can be used with temperature control model.

Technical Specifications

Temperature range	20 ~ 40 °C
Order no. (with temp control)	0022763
Order no.(without temp control)	0022765

Temp range specification only applicable to with temp control model only. Cells are order separately.

Water circulated thermostated cell holder

The water circulated thermostatted cell water holder uses a circulating water provided by an external circulating water bath to maintain a constant temperature of the sample

to be tested, and is often used to study the enzymatic kinetics.

0022764

Technical Specifications

Cell, external water circulating bath are ordered separately.

Flow cell holder

Order no.

User can use a syringe or other sampling device to inject sample. There is no need to use cell. It is suitable for continuous measurement of samples. **Technical Specifications**

Rectangular long path cell holder

For sample of low concentration Order no. 0022758

Cylindrical cell holder

Order no. 0022761

High And Low Temperature Cell Holder

The dual temperature-controlled cell holders mounted on posts, one is used for the sample and the other for the reference. Designed for mounting up to 2 standard 10mm cells with temperature control and

stirring. Each has a thermoelectric (Peltier) device mounted to one side of the tower for temperature control.

Technical Specifications

Temperature range-20 ~ 110 °CSpeed400 ~ 2000 rpmIncludes magnetic stirrer.

separately Order no. **0023613**

changer

Cells are order

Manual 5-cell

Film holder For plastic film sample Order no. 0022759

UV2600 latest accessory

High sensitivity integrating sphere IS-2600

IS-2600 Integrating Sphere	Technical Specification
Internal diameter	60 mm
Emerging angle	0°/8°(Total / Diffused reflect
Reflecting material	Optopolymer
Wavelength range	240-800nm
Aperture diameter	15 mm
Baseline flatness	Less than +/- 1%T (Slit width 5nm, Scan Speed 30
Noise	Less than 0.002Abs (500nm, slit
Detector	PMT R928
Aperture ratio	4.9%
White plate	Optopolymer

UV2600 Technical Specifications

Wavelength range	190~900nm	Wavelength slew speed	3,000nm/min	
Wavelength setting resolution	0.01nm	Light source	Deuterium lamp, Tungsten lamp	
Wavelength accuracy	±0.3nm	Light source switching	Auto (325~370nm)	
Wavelength repeatability	0.1nm	Photo detector	Photomultipler tube	
Baseline flatness	± 0.001Abs(200~850nm)	Control system	PC computer	
Baseline stability	0.0004Abs/h (500nm, after 2 hours warm up)	Optical system	Double beam	
Noise	± 0.0004Abs(500nm)	Sample compartment di 124 (W	mension) x 300(D) x 142 (H) (mm)	
Slit width	0.1,0.2,0.5,1,2,5 nm Auto switch	Instrument dimension 710 (W) x 630(D) x 268 (H) (mm)	
Stray light	0.010%T (220nm Nal, 340nm 360nm NaNO ₂)	Instrument weight	Approx. 50kg	
Max scan speed	2,000nm/min	Power source	220VAC(50/60Hz)	
Measurement mode	Abs %T Conc E(S) E(R)	Power	300VA	
Data range Abs : -4.000 ~ 5.000 %T : 0 ~ 600 Conc : -9999 ~ 9999 E(S) E(R) : 0 ~ 600				
Photometric accuracy	± 0.002Abs(0~0.5Abs) ± 0.004Abs(± 0.30%T(Using NIST 930D Standard N	(0.5~1Abs) ± 0.008Abs(1~ eutral Density Filter)	2Abs)	
Photometric repeatability	± 0.001Abs(0~0.5Abs) ± 0.002Abs(± 0.15%T(Using NIST 930D Standard N	0.5~1Abs) ± 0.004Abs(1~ eutral Density Filter)	2Abs)	
			(6	

Glass filter holder

For glass filter sample Order no. **0022757**

012600

UV2600

FL970 Fluorescence Spectrometer

FL970 is high performance, intuitive, support wide variety of fields, which can satisfy the R&D and laboratory routine operation purpose. FL970 is now your premier partner for R&D and analytical application.

Techcomp Hong Kong

Unit 06, 26/F., Tower 1, Ever Gain Plaza, 88 Container Port Road, Kwai Chung, N.T., Hong Kong Tel: 852-2751 9488 Fax: 852-2751 9477 E-mail: techcomp@techoomp.com.hk

Techcomp Thailand

99/349 Na-Nakam Building 7th FL, Cheangwattana Rd., Tungsonghong, Laksi, Bangkok 10210, Thailand Tel:+66-25761629-30 Fax: 66-2-5761631 E-mail: service@techcomp.co.th

Techcomp Middle East

Dubai Airport Freezone , Building 4E Block A, Office G13, PO. BOX 371347, Dubai, UAE Tel: +971-4-204 5930 Fax: +971-4-204 5932 Email: info@techcomp.me

Techcomp China

4th Floor, Tower 1,AVIC Technology Building, No.58 Beiyuan Road, Chaoyang District, Beijing 100022, China Tel: 86-10-6401 0651 Fax: 89-10-6406 0202 E-mail: techcomp@techcomp.cn

Techcomp USA

3019 Alvin Devane Blvd., Austin TX 78741, USA Tel: +1 (512) 215-8335 Email: sales@scioninstruments.com

Techcomp Singapore

2 International Business Park, #09-06 Tower 1 The Strategy, Singapore 609930 Tel: 65-6267 8921 Fax: 65-6267 8923 E-mail: techcomp@techcomp.com.sg

Techcomp Europe

4 Bain Squar, Kirkton Campus Livingston, EH54 7DQ, United Kingdom Tel: +44(0)1908 211 900 Email: sales@techcomp-eu.com